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SOLUTIONS TO ARBITRARILY ORIENTED PERIODIC
DISLOCATION AND EIGENSTRAIN DISTRIBUTIONS

IN A HALF-SPACE

D. R. J. OWEN

Department of Civil Engineering, University of Wales, Swansea, Wales

Abstract-A solution is given to the stress field produced by a periodic continuous distribution of dislocations
(or plastic distortion) in a half-space, for the general case where the cartesian co-ordinate system specifying the
distribution is arbitrarily oriented with respect to the free surface. When a plastic distortion is prescribed, the
condition of full fixity at the surface is also dealt with. It is then shown how the theory may be applied to determine
the stress and displacement fields in a fibre reinforced material. The problem of a Frank dislocation network
inclined to the free surface of a half-space is finally considered.

t. INTRODUCTION

THE usefulness of the theory of continuously distributed dislocations in the analysis of
problems in material behaviour is now generally accepted. For example, work hardening
theories often depend on dislocation pile-up mechanisms which can be readily treated by a
continuum approach, as first indicated by Leibfried [1]. Also much work has been done in
recent years in establishing a correspondence between continuous dislocation theory and
the mathematical theory of plasticity, a general formulation being provided by Mura [2, 3].
Such methods have been used by Bilby et al. [4,5] who considered the yielding of cracks
subjected to shear and by Owen [6] in the determination of elastic-plastic stress-strain
relationships of composite materials.

The solution to a prescribed orthogonal periodic distribution ofcontinuous dislocations
or plastic distortion in an anisotropic unbounded medium has been given by Mura [7].
Such a result is of importance as solutions to other problems may then be readily generated
by Fourier methods. This result has been extended by Owen and Mura [8] to the case ofan
isotropic half-space, the analysis being limited to the situation where the free surface is
parallel to one of the co-ordinate planes prescribing the dislocation distribution.

However, in actual materials a free surface may have an arbitrary disposition with
respect to a dislocation system; being dependent on the availability of slip and cleavage
planes, etc. Therefore it is the aim of this paper to provide solutions for a half-space con­
taining a dislocation or eigenstrain distribution in the form of a single exponential term
described in a cartesian reference system which may be arbitrarily oriented with respect
to the free surface. For the case of a prescribed plastic distortion (or eigenstrain) the con­
dition of full fixity of the surface is also dealt with.

Much attention has been focussed on the analysis of fibre reinforced materials, a
comprehensive study of the analytical solutions available having been made by Holister
and Thomas [9]. Continuous fibres are readily analysed by simple mechanics, but discon­
tinuous fibre systems, which are far more widely used, present theoretical difficulties due
to the singularities at the fibre ends.
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(1)

The results developed are then applied to the determination of the stress and displace­
ment fields in such a composite material. Finally the problem ofa Frank dislocation network
inclined to the free surface of a half-space is investigated.

2. CONTINUOUS DISTRIBUTION OF DISLOCATIONS

Consider a material containing a large number of randomly oriented moving disloca­
tions. It is often convenient to analyse such a system as a distribution of continuously
distributed dislocations defined, with respect to a cartesian system Xi' by the following
dislocation density and velocity tensors

(Xhi = Lnvhbi

Vlhi = LnVlvhbi

where Vh is the unit vector tangent to the dislocation line and n is the number of dislocations
with direction Vh ' Burgers vector bi and velocity Vz, crossing a unit area perpendicular to
Vh . The summation L is taken with respect to all sets of dislocations with different values
of n, Vh, bi and VI at the point under consideration. The above two tensors are related,
through the plastic distortion by

(Xhi = - ShlkPt;,1

(J't; = - Skmn Vmni

(2)

(3)

where Shlk is the unit permutation tensor and ,I denotes partial differentiation with respect
to the co-ordinate Xl' The quantity P't; is the plastic distortion and Ptt its time rate. The
plastic strain or eigenstrain s~ is given by

s't; = i(pt; +Pit)· (4)

The plastic strain is the non-elastic deformation produced by the dislocation distribution.
Physically this may be associated with the plastic deformation of materials or the "initial
straining" (or eigenstrain) produced by lack of fit or thermal conditions.

The total strain is

and the elastic strain Ski is related to the stress by

a pq = Cpqmns::'n .

When a stationary dislocation distribution of the periodic form

(5)

(6)

(7)

where ~hi and Ci are arbitrary constants, exists in an unbounded medium the stress field
is given by Mura [7] to be

For an isotropic material

L
k

= DkmP, + 2J1.)c
2

- ckcm(A. + J1.)
m c4 J1.(A. + 2J1.)

(8)

(9)
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where

and

Cijkl = )"b;/)kl + j1.bikbjl + j1.b;/)jk

bij being the Kronecker delta and A. and j1. are the usual Lame constants.
For the case when a plastic distortion is prescribed as

(10)

(11)

where f3:m is an arbitrary function of the constants Ci , the stress and displacement fields
are respectively given by

and

U" - 'C L 11* ic,x,a - -I ijklCI kaPji e .

3. ARBITRARILY ORIENTED PERIODIC DISLOCATION

DISTRIBUTIONS IN A HALF-SPACE

(12)

(13)

Consider a half-space with free surface defined by x; = 0 as shown in Fig. I. Suppose
that a continuous dislocation distribution exists within this half-space which is periodic
with respect to a second arbitrarily oriented cartesian reference system, Xi' The relative
orientation of the two sets of co-ordinate axes is defined by

xi = aijXj

Xi = ajiXi

FREE SURFACE -

(x x x) OISWCAT/ON COORDINATE SYSTEM
I' 2' :!

(x' x' x') SURFACE COORDINATE SYSTEM
l' 2' 3

FIG. I. Co-ordinate systems for half-space and periodic distributions.

(14)
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where au is the set of direction cosines for the two systems. Also, the transformation of
stresses is given by

(15)

It is required that all tractions on the free surface x'[ = °vanish. The surface tractions are

(16)

where n'[ is the unit normal to the free surface. Then from (8) and (16) the tractions at any
point (0, x~ , x~) on the free surface are

(17)

with

(18)

and the values Xi being the representation of the point (0, x~, x~) in the Xi co-ordinate system.
Using (14) it may be shown that

where

Using (19) in (17)

, ,
CiXi = CiXi (19)

(20)

(21)

These free surface tractions may be eliminated by the superposition of forces - X~ to this
surface. Defining G~m(x' - x') as the displacement in the x~ direction at the point (x'[ ,x~, x~)

due to a unit concentrated force in the x~ direction acting at the point (0, x~, x~) on the
surface, the superimposed stress field due to - X~ is given on use of (6) and (21) to be

f
JJ fJJ oG'

(J's = - A' C ~ ei(c2x 2+C3X 3) dx' dx'
pq m pqkl '" , 2 3 .

-JJ -JJ uX,
(22)

The Green's function, G~m' for this problem is given by Owen and Mura [8J and the integra­
tion procedure for (22) is identical to that in Ref. [8J, yielding

where

'S
(Jpq = (23)

(24)
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and it is understood that .Jc;/; = 1c~1. Substituting for A~ in (23) from (18) and adding the
whole space stress field (8) gives the complete stress field due to dislocation distribution (7),
to be

X {(iC2D2W+iC~D3W D)1' D1w OI~m} -xl./(C"+C]2l]
.J(c'i + c~2) 1w km + .J(C22 + C~2) aX~ e .

In the Xi reference system the stress components are

(25)

(26)

It is worth emphasising that in (25) the quantity Ltr contains Ci and not c;.
The stress field for a plastic distortion prescribed periodically in the Xi co-ordinate

system in the form (11) follows the previous analysis with (18) replaced by

(27)

and (8) replaced by (12). This results in the following total stress field.

, - ( C L n*_n*) i(CiX i+ C3X 3)[ C iClxl+1 C C
(Jab - CsCn ijls Irl' ji I'nr e aapabq pqrn e 2amuall ulrn abkw

X {(iC2D2W+iC~D3W D )1' + D1w aI~m} e- X1 ./(Ci2 +CP)] (28)
.J(C22+ C~2) 1w km .J(C22+C~2) aX'l .

Using (21), the superimposed tractions - X~ produce displacements of

Substituting for A~ from (27) and adding the whole space displacements (13) gives the
displacements in the x; co-ordinate directions to be

(30)

4. PERIODIC PLASTIC DISTORTION DISTRIBUTION IN A
HALF-8PACE WITH THE SURFACE RIGIDLY CONSTRAINED

Noting (19) and that,
(31)

the whole space displacements at any point (0, X2,x~) on the surface is given from (13) to be

where

u;:; = B~ ei(ci"i +C3"3) (32)

(33)
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In order to satisfy the condition of zero displacements on the surface X'l = 0, it is necessary
to prescribe additional displacements of - U',:;. These give rise to additional stresses of

foo f·xc aH'
a'S = - B' C ~ ei(C1Xl +C3 X 3) dx' dx'

pq m pqkl ;, , 2 3
- xc - 00 UX I

(34)

where H~m is the displacement in the x~ direction at the point (X'l' x2,x~) due to a prescribed
unit displacement at (0, X2' x~) in the x~ direction, and is also recorded in Ref. [8]. Substitut­
ing in (34) for B~ from (33) and adding the whole space stress field (12) gives the stress field
in a half-space with rigidly constrained surface due to an arbitrarily oriented prescribed
plastic distortion, to be

, - i(c,x, +C3X 3) { C ( C L li* _ li*) ic'tx't
a pq - e apuaql ulrn CsCn ijls trP ji Pnr e

(35)

where

J~m = <5km + ,-1. +3/1 {<5k1 <5m1 .j(C22+ C~2) - .jr~~~C~'2) (<5 m2 + <5m3 )(<5k2 + <5k3 )
A+ /1 C2 +c3

- iX'l[<5k1c~ + <5m A - <51k<51m(c~ + C~)]} . (36)

The displacement field produced by displacements - U',:; on the surface X'l = °is

U's = - foo foo B' H' ei(clxl+c3x3) dx' dx' (37)
a m am 2 3'

-00 -00

Substituting for B~ from (33) and adding the whole space displacements (13) results in

U' = ic C.. li*. e i(Clxl+c3 x3){a L J' e-x\J(cf+crr)_a L eic\x't} (38)
a I lJklPkt mu ku am au ku .

5. SINGLE EDGE DISLOCATION IN A HALF-8PACE

To illustrate simply the use of the preceding theory, consider the two-dimensional
problem of a discrete straight edge dislocation running in the x 3 direction at a distance a
from the free surface and with arbitrary direction of Burgers vector, b, as shown in Fig. 2.
As there is no variation in the X 3 direction, c3 may be set equal to zero. The only non-zero
component of the dislocation density tensor may be expressed as

1X31 = b . (5(x 1 - a cos 8). <5(Xl +a sin 8)

where <5 is the Dirac delta function which may be expressed in Fourier form as

(39)

(40)
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FIG. 2. Single edge dislocation in half-space with arbitrary direction of Burgers vector.

The set of direction cosines for this problem are

[

COS () - sin ()

aij = Si: () co~ () (41)

From (25) the shear stress component 0"~2 is found to be (for only iX31 non-zero)

2i/Jii,31C2 eiC2X2 {[ 2 2 sin 2() ] ic\x\
0"~2 = (1- v)(c~ + C~)2 ~C2 - c1)--2-- c1C2 cos 2() e

+ [(C2 sin () - C1cos ()(c2 cos () + C1sin ()(x~lc21-1)

+iX~C2(Cl sin ()+c2 cos ()2J e- X \I C21} (42)

with v being the Poisson's ratio of the material. Using (40) dislocation distribution (39)
may be expressed in periodic form and substitution in (42), and noting (20), results in

'_ ip.b fro fro c2eiO(C2Sin8-C1COS8){ 2 2 sin2() }
0"12 - 2 2(1_ ) (2 2f (C2-Cl)-2--ClC2cos2()

n v -ro -00 C1 +C2

xei(CIXl+C2 X2)dc dc + p.b foo fro c eiO(C2 Sin6- CICOs8)

1 2 2n2( 1- v) _ro _ 00 2

X {-(c 1 sin ()+C2 cos ()3 X '1 +i(C2 sin ()-c 1 cos ()(C2 cos ()+Cl sin ()(x~lc21-1))

(43)

The first integral represents the whole space stress, the latter being the free surface contribu­
tion. The integrations in (43) may be performed by use of Cauchy's theorem in the complex
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C I and C2 planes, giving
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J1b {(X~ - a) [(X 'I - a)2 - X~2J fJ X~[(X'I - a)2 - X~2J . fJ
(I' = cos + sm

12 2n(1-v) [(x'1-a)2+ xn2 [(xl-af+x~2J2

[
2a(X'1 - a)(x'l + a)3 + 6X'1(X'1 + a)x~2 - X~4 (X'l + a) [(X '1 + a)2 - X~2]J fJ- + ~

[(X'I + af + xn3 [(X'l + a)2 + xn2

[
4aX'lX~[3(X'1 +a)2-xlJ X~[(X~ +a)2-x~2JJ . 'fJ}+ ~ .

[(X'I + a)2 + X~2J3 [(X'I + a)2 + xn2

Which agrees with the standard solution of Head [10].

(44)

6. APPLICATION TO THE ANALYSIS OF FIBRE REINFORCED MATERIALS

As previously stated a material reinforced by a system of discontinuous fibres presents
analytical difficulties due to the geometric singularity at the fibre ends. However, a solution
may be obtained by replacing the actual fibres by matrix material containing an initial
strain distribution which produces the same restraint to deformation as the high modulus
fibres.

Consider a half-space subjected to a tensile traction, and reinforced by a regular fibre
array as shown in Fig. 3. Conditions are assumed to be those of plane strain in the x3

direction. The fibres all have a length/thickness ratio of alb and the spacing is determined
by the dimensions d and e. The position of the fibre array relative to the free surface is
governed by fand h, while its orientation is defined by the angle fJ. Suppose that the actual
fibres are replaced by matrix material containing a constant initial strain, A, in the axial
fibre directions only. It is assumed that the fibres have no lateral restraining effect and
consequently the theory is restricted to fibres with a high length/thickness ratio. The value
of A will be determined later. This prescribed plastic distortion may be expressed in the

-
-

T-

-
-

FIG. 3. Fibre reinforced half-space subjected to tensile traction, T.
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Xi co-ordinate system of Fig. 3, by means of Fourier series as follows

P* ( ) _ 2Aab Ab ~ 1 ( . pna . pn(d-a)) (i 7t/d)(x -f)
11 X I ,X2 - --+- L. - sm--sm e p ,

de ne p= _ OCJ p d d
p*O

+Aa f ~(sin qnb -sin qn(e-b») e(iq7t/e)(x2-h)
nd q= -OCJ q e e

q*O

A 00 00 1 (. pna . qnb+2 L L - SID-sm-
n p= _ 00 q= _ 00 pq d e

p*O q*O

+ sin pn(~-a) sin qn(:-b) e(ij11t/d)(x1-f)e(iq7t/e)(x2-h).

All other components of Pt being zero.
For a PT1 of the form given by (11) the stresses and displacements in an unbounded

medium, with respect to co-ordinate system Xi' are given by (12) and (13) as

2J1. c4
(Ju11 = Z P* ei(c,x, +C2 X 2)

-l-v(d+d)Z 11

2Jl eZez
(J~z = --- 1 Z l1T1 ei(c,x, +C2 X 2)

I-v (d+enif'

2J1. e e3
(JU _ __ 1 Z P* ei(c1x1 +CZX 2)

IZ-l-v(e~+df 11

UU = -iel (2-V ez + cZ )P* ei(c 1X,+qx2)
1 (Z + Z)Z 1 Z 1 11el Cz - v

UU = - ic2 _v_ ez _Cz) p* ei(c,x, +C2 X 2)

2 (d+d)2 I-v 2 1 11

where J1. and v are the material properties of the matrix material. Each term in (45) is of
the form in (11), hence the stress and displacement fields can be found from (46) on substitu­
tion of appropriate values for c 1 and cz, and summing over p and q, giving

U 4JlAa 00 1( . qnb . qn(e-b») qn
(J11 = - (1 L - sm--sm cos-(xz-h)

n -V)dq=lq e e e

8J1.A 00 OCJ q3 pn qn
z L L Q.-cos-(x1-f)·cos-(xz-h)

n (l-V)p=lq=1 p d e

8J1.A (e) z ifJ ifJ pn qn
(Jl2 = - 2( -d L L Q.pqcOS-d(X1-f).COS-(X2-h)

n I-v) p=lq=l e

8JlA e OCJ 00 2' pn . qn
(J~z = - Z( '-d L L Q.q sm-

d
(x 1-f)·sm-(x2- h)

n I-v) p=lq=l e

U~ 4Aez
00 00 (2-V 2 eZ 2) . pn qn

-=~d L I Q. -q +dz'P sm-d(xl-!).cos-(xz-h)
a n a p= 1 q= 1 1- v e

Ui 4Ae 00 00 (v 2 eZ z) pn . qn
-=-3- I I Q. -q -2:'P cos-(x 1 -f)sm-(xz-h)
b n b p= I q= 1 1- v d d e
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where

(48)
(

. pna . qnb . pn(d-a) . qn(e-b))
slOdslO~+slO d SIO e

Q= (2 )22 e 2
q +d2 ' P

It should be noted that all stresses and displacements are real.
The stress and displacement fields caused by the presence of the free surface may be

found with the aid of equations (28) and (30) in which the terms dependent on I~m represent
the surface effects. For only f3t I non-zero and of the form given by (11), the stresses and
displacements (with respect to the x; co-ordinate system) due to the presence of the free
surface can be shown to be

(J'tl = 2J.lS{c~(1 +x'llc~I)+(CI cos fJ-C2 sin fJ)iX'IC~}

(J~2 = 2J.lS {C~(1- x't1c~l) + i(~:~ - X'1 C~) (c 1 cos fJ - C2 sin fJ)}

(J'1'2 = 2J.lS{-ix'lc~2+(x~lc~l-l)(clcosfJ-c2sinfJ)} (49)

U~ = I~I {C~(X't1C~1 +2(1- Vn-i( X'IC~ +1:~I(1-2V))(CIcos fJ-c2 sin fJ)}

U~ = I~I {iC~(I:~I(I-2V)-X'IC~) +(2(1- v)-x't1C~I)(CIcos fJ-c2 sin fJ)}

where

(50)
C' c211*S = 2 21' 11 e - x'dcil eicixi

(1- v)(d +d)2 .

For this problem the transformation direction cosines are again given by (41) and hence
from (20)

(51 )
C'1 = Cl cos fJ-C2 sin fJ

c~ = C1 sin fJ+C2 cos fJ.

Once again since each term in (45) is of periodic form, summations over p and q yield the
stresses and displacements due to the presence of the free surface to be

, 4J.lAa cos
2

fJ ~ [( ') ,I, ,qn. fJ . ,l,J
(J t I = d( L..- T. 1+ XI m cos 'I' + XI - SIO . SIO 'I'

n 1- v) q~ 1 e

4J.lA 00 00 [ (pn qn) J+ 2(1_) L L W. (l+x'ln)cosy- -d cosfJ--sinfJ x'isiny
n v p~-ooq~1 e

p*O

'5 4J.lAa cos
2

fJ 00 [, ( 2 , )qn. . J
(J22 = nd(l-v) q~1 T. (1-x1m)cosl/J+ ;-x1 ---;-slOfJSIOl/J

4J.lA 00 00 [ (pn qn) (2 ) J+ 2(1_) L L W. (1-X'ln)COSY- -d cosfJ--sinfJ --X'1 siny
n v p~-ooq~1 e n

p*O

(52)



Solutions to arbitrarily oriented periodic dislocation and eigenstrain distributions 1D a half-space 1353

's 4JlAa COS
2

0 ~ [, 2 fJ qre . A.. • 0 J
(112 = red(1-v) /:;'1 T. XICOS 'esm'f'+(I-x~m)sm cosc/J

4JlA ~ ~ W[ ,(pre . 0 qre 0)'+ 2(1_) £.., £.., • Xl -d sm +-COS sm y
n V p=-oo q=l e

p*O

(
pn qn.)- COS e- - sm 0

+ d e (X~n-l)COSyJ(p; sin e+ q: cos e)
u~ 2Acos

2
fJ 00 [ ( (1-2V»)qre. . JI--a = nd(l-v) q~l T. (2(I-v)+x~m)cosc/J- X'l+-m- esmOsmc/J m

2A 00 00 [

+ n2a(I-V)p=~ooq~1 W. (x'ln+2(I-v»cosy
p*O

+ (p; cos e- q: sin e) (x~ + (1 ~2V») sin yJ
U's 2Aa cos

2
0 00 [( (1- 2V»)qre JI~ = I T. X'l cos20--- -sin c/J+(x~m-2(I-v»sinecosc/J m

b nbd(l-v) q=l m e

2A 00 00 [(, (1- 2V») (pn. qn ).
+ 2b(1-) I L W. x l--- -d sm e+-cos 0 sm y

re v p=-ooq=l n e
p*o

(
pre qn.)-cosO--smO

+(de) (2(I-V)-X"n)oo'IJpn. qre
dsmO+ecosfJ

where

T 1(. qreb . qre(e-b») -xjm= - Sln--sm e
q e e

(
pn qre )2-sin O+-cos 0

1 (. pna . qreb . pre(d-a) . qn(e-b») (qn)2 d e
W = - smdsm-+sm d sm - (()2 ( )2)2 e-

x1n

pq e e e pn + qn
d e

m = Iq: cos e!
n = Ip; sin 0+q: cos 01

c/J = qn(x'z cos 0 - h)
e

y = p;(X'z sin O-f)+q:(X'zcosfJ-h).

(53)
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(54)

Once again these final expressions are entirely real. The complete stress and displacement
fields are given by the sum of (47) and (52) (after transformation to a common co-ordinate
system) and addition of the values associated with the applied traction, T.

The value of the initial strain, A, may be determined from the condition that the fibres
behave linearly over a specified fraction pa of their length. Due to the applied stress T the
strain in the x I direction in the absence of any reinforcing fibres is

Gil = ~(sin2 0- v cos2 0)

where E and v are the elastic properties of the matrix material. Due to the eigenstrain
distribution there will be an additional strain along the axis of the fibre of

A U~(pa, 0)

pa

since the displacement along a fibre is linear over a fraction pa of its length. U~ is the
displacement in the x I direction in the whole space due to a unit eigenstrain, and is given
from (47). Therefore the total strain along a length pa of the fibre is of constant amount

T . 2 2 U~(pa,O)
-(sm O-vcos O)+A .
E pa

The total stress in the x I direction along the axis of a fibre is

T sin20 + A(j~ 1(0,0)

where (j~ I is the whole space stress, (47), due to a unit eigenstrain. The first stress term is that
due to the applied load, the second being that produced by the eigenstrain distribution. The
value of (j~ I at XI = 0 may be taken as the stress is constant (see Fig. 7) along the effective
length of the fibre. If the fibres have an elastic modulus of KE, where K is a constant, then
the strain along the effective length pa of the fibre is of constant value

1
KE(T sin2

O+A(j~,(O, 0))

Equating (54) and (55) gives the required value of A to be

(55)

(56)

Numerical results were obtained, by the use of a computer, for a fibre orientation, 0, of
45° and a value of K = 22, being representative of a carbon fibre reinforced composite.
The distance between centres of fibres was chosen as ten times the fibre thickness and the
fibre length to thickness ratio taken as 24. The Poisson's ratio of the matrix material was
assumed to be 0·45 being representative of an epoxy-resin commonly used. The displace­
ment along the axis ofa general fibre is shown in Fig. 4 for the case ofan unbounded medium
subjected to an arbitrary tensile stress T. The additional displacements caused by the presence
of a free surface at X'I = 0 are shown in Fig. 5, as well as the total axial displacement.
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5.1:
E

4.:£
E

1:£
E

~ rx,.oJ
a

-~-(;:= ,," ." =: 7:

- --+
Xl x,

E
FIBRE

~22E '; E· MATRIX MODULUS

VMATRIX ~ 0·45

~~24 {dO
f ~ h ~ 0

FIG. 4. Axial displacements of a typical fibre in whole space.

Figure 6 illustrates the shear stress distribution along the fibre-matrix interface for
both whole space and half-space situations. The normal stress distribution along the axis
of the fibre is shown in Fig. 7.

7. FRANK DISLOCATION NETWORK INCLINED TO A FREE SURFACE

Consider a regular Frank dislocation network ofedge length 2a as shown in Fig. 8. For
a perfectly hexagonal network every dislocation should be a pure screw according to

-4Z
E

3I
E

··II
E

·,2,
E

Jli (X"O)
a

~
x._ x _

r:=" :::: 'l;"- -- -xl x,

E ~22E; E - MATRIX MOOULUS
F/8RE

VMArIIlX ~ -45

%~ 24 t ~ 70

EFFECT

TOTAL OISPLACEMENT
IN WHOLE SURFACE

FIG. 5. Axial displacement of fibre in a half-space.
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1Dr;r Oii x" b)

8t"

TOTAL STRESS IN WHOLE SPACE - "

- TOTAL STESS IN HALF SPACE
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FIG. 6. Variation of shear stress 0"12 along fibre/matrix interface of fibre in a reinforced half-space.

Frank [11]. Suppose such a network occurs in the vicinity of a free surface defined by
X'I = 0; the relative orientation of the surface and network being governed by the set of
transformation direction cosines, aij' between the co-ordinate systems Xi and x;. The com­
plete network is composed of three systems of dislocation segments parallel to AB, Be and
AF and denoted by the superscripts 1,2 and 3, respectively.

2·01·61·4
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VMATRIX ~ 0-45

.f!. ~ 24 .£. ~ 'A
b b
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108'6'4
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12t

1·41:

2-07:

1-67:

FIG. 7. Variation of normal stress 0"11 along axis of fibre in a reinforced half-space.
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FIG. 8. Illustration of Frank dislocation network in a half-space showing surface and network
co-ordinate systems.

The dislocation density of system 1 can be expressed in the Xi co-ordinate system in
terms of Fourier series and integrals to be

b(ll foo {2 1 00 • 00 1 [ mraW = -+- L (1+cosmn)e11mn/v'(3)a]x,+ L - sin-
4nJ(3)a -00 3 3 m=-ro n=-oo nn 3

m;<O n;<O

2nn . 2nnJ' 1 00 00 1[. nn+icosnn-icos---sm-- e(lnn/3alX2+_ L L - sm-
3 3 nn=-oom=-oon 3

n;<O m;<O

(57)

+cos nn (- i cos 2~n - sin 2~n+ i cos nn)Je(inn/3a)X2 elimn/j(3laJx3} eic,(x,-d) del

all other components being zero and b(ll the Burgers' vector. Identical expressions hold for
systems 2 and 3 but with X 2 , X3 replaced by 112,113 and ~2' ~3' respectively.

The stress field for such a network parallel to the free surface of a half space has been
determined by Owen and Mura [8], the results being presented as the stresses for such a
network in an unbounded medium on which were superimposed the stresses caused by the
free surface. For the present case the stress field for the network in an unbounded medium
will be unchanged, and it only remains to find the portion of the stress field due to the
presence ofthe free surface. For 0(22 ofthe form (7) the surface effect stresses can be expressed
from (25), with respect to the x; co-ordinate system, as

(58)
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where

and
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(58 ctd.)

(59)

(60)

where both R22 and S22 are real.
Each term in (57) is of the periodic form (7), hence the stresses due to the presence of the

free surface may be obtained from (58) on integrating with respect to Ct from - 00 to 00

and performing the various summations over m and n. A computer program was written for
this purpose, the contributions ofsystems 2 and 3 also being calculated and added. Numeri­
cal values were produced for the configuration shown in Fig. 9, for an arbitrary Burgers
vector, b. Some typical stress components, expressed in the x; co-ordinate system, calculated
along the line, HJ, defined by X2 = 0, x 3 = J(3)a/4 are shown in Figs. 10-12.

FREE
StRFACE

FIG. 9. Frank dislocation network in a half-space, inclined at 30° to the free surface.
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FIG. 10. Variation of stress component 0-;2 along line HJ, defined by X2 = 0, X 3 = -/3a/4.

8. DISCUSSION OF RESULTS AND CONCLUSIONS

Solutions are given for the stress fields in a half-space due to a periodically prescribed
distribution of dislocations and plastic distortion. In particular any arbitrary relative
orientation between the free surface and the cartesian co-ordinate system which defines

·02

(J" (X,.OI~)

.It bla

l .....PLANE OF NETWORK------

5­
o 1s-==----t:;;:-----~s=------~1~ls-----~io=------Ji270s,---.o:;a......

HALF SPACE

··04

FIG. II. Variation of stress component 0-;, along line HJ, defined by X 2 = 0, x, = -/30/4.
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FIG. 12. Variation of stress component 0-; 3 along line Hi, defined by X2 = 0, X3 = .J3a/4.

the distributions is permitted. For the case of prescribed plastic distortion the condition
of complete fixity of the surface is also considered.

The theory is then applied to the problem of a material reinforced by a regular array of
fibres. Figure 4 clearly demonstrates the restraint to deformation provided by the fibres,
whilst a marked reduction in displacement near the fibre end is also evident. This latter
effect is observed in practice and is due to the fact that full transfer of load from matrix to
fibre only takes place after a certain distance from the fibre end. The main feature of the
half space solution of Fig. 5 is the large deformation produced at the free surface.

The expected singularity in interfacial shear stress at the fibre end caused by the fibre
geometry is evident in Fig. 6. A similar singularity occurs at Xl = 0 due to the presence of
the free surface. Figure 7 illustrates the basic load-bearing mechanism of fibre reinforced
materials. It is seen that the fibre is highly stressed in the axial direction, the load being
rapidly shed beyond the fibre end. The presence of the free surface, x~ = 0 merely results in
the reduction of the fibre axial stress in this region.

For the Frank dislocation network problem, it is seen from Figs. 10-12 that the boundary
stress requirements (i.e. a'tj = 0) are completely satisfied. A considerable reduction in stress
values due to the presence of the free surface is also evident.
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AOCTpaKT-}laeTcli peweHHe lInIi HOJIIi HanplilKeHHli, Bb13Ill1HHOrO nepHOlIH'IecKHM CnJIOWHbIM pacnpe­
lIeJIeHHeM lIHCJIOKaUHli!HJIH nnaCTH'IecKHX lIHCTOpcHli!B nOJIynJIOCKOCTH, lIJIIi o6wero cily'lall, B KOTOpOM
CHCTeMa lIeKapTOBblX KooplIHHaT. onpelIeJIlilOWali lTO pacnpelIeJIeHHe. npOH1BOJIbHO HanpaBJIeHa no
oTHoweHHH K CB06olIHOli nosep"HOCTH. PaCCMaTpHBaeTCIi TaKlKe YCJIOBHe nOJIHoli HenOlIBHlKHOCTH Ha
nosepxHOCTH lIJIIi nJIaCTH'IC:CKOli lIHCTOpcHH.

YKalbIIllleTCIi. 3aTeM. cnoc06 npHMCHeHHII TeopHH Mil onpelIeJIeHHII nOJIdl HanplilKeHHA H nepeMe­
weHHli B MaTepHaJIe, YCHJIeHllblM BOJIOKHOM. I1CCJIelIyeTclI, HaKOHeu. 3alIa'la COTH lIHCJlOKaUHli <!JpaHKa.
HaKJIOHeHHblx KCs0601IHOli nosepXHOCTH.


