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SOLUTIONS TO ARBITRARILY ORIENTED PERIODIC
DISLOCATION AND EIGENSTRAIN DISTRIBUTIONS
IN A HALF-SPACE

D. R. J. OweN

Department of Civil Engineering, University of Wales, Swansea, Wales

Abstract—A solution is given to the stress field produced by a periodic continuous distribution of dislocations
(or plastic distortion) in a half-space, for the general case where the cartesian co-ordinate system specifying the
distribution is arbitrarily oriented with respect to the free surface. When a plastic distortion is prescribed, the
condition of full fixity at the surface is also dealt with. It is then shown how the theory may be applied to determine
the stress and displacement fields in a fibre reinforced material. The problem of a Frank dislocation network
inclined to the free surface of a half-space is finally considered.

1. INTRODUCTION

THE usefulness of the theory of continuously distributed dislocations in the analysis of
problems in material behaviour is now generally accepted. For example, work hardening
theories often depend on dislocation pile-up mechanisms which can be readily treated by a
continuum approach, as first indicated by Leibfried [1]. Also much work has been done in
recent years in establishing a correspondence between continuous dislocation theory and
the mathematical theory of plasticity, a general formulation being provided by Mura [2, 3].
Such methods have been used by Bilby et al. [4, 5] who considered the yielding of cracks
subjected to shear and by Owen [6] in the determination of elastic—plastic stress—strain
relationships of composite materials.

The solution to a prescribed orthogonal periodic distribution of continuous dislocations
or plastic distortion in an anisotropic unbounded medium has been given by Mura [7].
Such a result is of importance as solutions to other problems may then be readily generated
by Fourier methods. This result has been extended by Owen and Mura 8] to the case of an
isotropic half-space, the analysis being limited to the situation where the free surface is
parallel to one of the co-ordinate planes prescribing the dislocation distribution.

However, in actual materials a free surface may have an arbitrary disposition with
respect to a dislocation system ; being dependent on the availability of slip and cleavage
planes, etc. Therefore it is the aim of this paper to provide solutions for a half-space con-
taining a dislocation or eigenstrain distribution in the form of a single exponential term
described in a cartesian reference system which may be arbitrarily oriented with respect
to the free surface. For the case of a prescribed plastic distortion (or eigenstrain) the con-
dition of full fixity of the surface is also dealt with.

Much attention has been focussed on the analysis of fibre reinforced materials, a
comprehensive study of the analytical solutions available having been made by Holister
and Thomas [9]. Continuous fibres are readily analysed by simple mechanics, but discon-
tinuous fibre systems, which are far more widely used, present theoretical difficulties due
to the singularities at the fibre ends.
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1344 D. R. J. OWEN

The results developed are then applied to the determination of the stress and displace-
ment fields in such a composite material. Finally the problem of a Frank dislocation network
inclined to the free surface of a half-space is investigated.

2. CONTINUOUS DISTRIBUTION OF DISLOCATIONS

Consider a material containing a large number of randomly oriented moving disloca-
tions. It is often convenient to analyse such a system as a distribution of continuously
distributed dislocations defined, with respect to a cartesian system Xx;, by the following
dislocation density and velocity tensors

Oy = Z nv,b;
Vi = 2, nVwb;

where v, is the unit vector tangent to the dislocation line and n is the number of dislocations
with direction v,, Burgers vector b; and velocity V], crossing a unit area perpendicular to
v,. The summation Y is taken with respect to all sets of dislocations with different values
of n, v,, b; and V; at the point under consideration. The above two tensors are related,
through the plastic distortion by

(1)

oty = — &l )
ﬁ;(kl = —ekmanm' (3)
where ¢, is the unit permutation tensor and ,! denotes partial differentiation with respect

to the co-ordinate x,. The quantity B* is the plastic distortion and B2 its time rate. The
plastic strain or eigenstrain ¢ is given by

e = 2BE+ B)- (4)

The plastic strain is the non-elastic deformation produced by the dislocation distribution.
Physically this may be associated with the plastic deformation of materials or the “initial
straining”’ (or eigenstrain) produced by lack of fit or thermal conditions.

The total strain is

& = &+ (5)
and the elastic strain ¢, is related to the stress by

G0 = Coomts (6)

pq pqmn®mn -

When a stationary dislocation distribution of the periodic form

Oy = Gy €5 (7)
where &,; and c; are arbitrary constants, exists in an unbounded medium the stress field
is given by Mura [7] to be

.
Opg = iCE;C

ra CijiiLoom®n; €. (8)

pgmn

For an isotropic material

. 5km(a' + 2#)(:2 - Ckcm(j' + #)

L
o ctu(d+2p)
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Solutions to arbitrarily oriented periodic dislocation and eigenstrain distributions in a half-space 1345

where
E=ctyei+c
and
Cijir = 20,00 + 100+ 10,0 ;. (10)

d,; being the Kronecker delta and A and p are the usual Lamé constants.
For the case when a plastic distortion is prescribed as

n = Bl e (1)

where B}, is an arbitrary function of the constants c;, the stress and displacement fields
are respectively given by

o-';rq = = Cpqmn( - clcncijkILkmB}‘li + :m) eic:xt (1 2)
and
UZ = - icijk,ClLka ; eictxt. (13)

3. ARBITRARILY ORIENTED PERIODIC DISLOCATION
DISTRIBUTIONS IN A HALF-SPACE
Consider a half-space with free surface defined by x| = 0 as shown in Fig. 1. Suppose
that a continuous dislocation distribution exists within this half-space which is periodic

with respect to a second arbitrarily oriented cartesian reference system, x;. The relative
orientation of the two sets of co-ordinate axes is defined by

X

ij

! (14)

(x,_x2_x¥ DISLOCATION COORDINATE SYSTEM
(X;_Xé,xs) SURFACE COORDINATE SYSTEM

FiG. 1. Co-ordinate systems for half-space and periodic distributions.
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where g;; is the set of direction cosines for the two systems. Also, the transformation of
stresses is given by

U;j = airajsars' (15)
It is required that all tractions on the free surface x| = 0 vanish. The surface tractions are
X;n = a:nln,l = amralsgrsnll (16)

where n is the unit normal to the free surface. Then from (8) and (16) the tractions at any
point (0, X3, x3) on the free surface are

X, = A, ex (17)
with
Ay = iamra1s8njhcrsuncijleku&hi (18)

and the values x; being the representation of the point (0, X3, x3) in the x; co-ordinate system.
Using (14) it may be shown that

CiX; = X (19)
where
Ci = a;ic; (20
Using (19) in (17)
X,, = A, elcrxatexsy) (21)

These free surface tractions may be eliminated by the superposition of forces — X/, to this
surface. Defining G;,,(x' —x') as the displacement in the x;, direction at the point (x , x5, x3)
due to a unit concentrated force in the x;, direction acting at the point (0, x5, x3) on the
surface, the superimposed stress field due to — X, is given on use of (6) and (21) to be

» e oG,

s ’ km _i(chx5 +c3x3) ’ ’

qu - _f f Ameq“ ax; [+ X2 TN de dX3. (22)
—w

The Green’s function, G,,,, for this problem is given by Owen and Mura [8] and the integra-
tion procedure for (22) is identical to that in Ref. [8], yielding
A,C

rs __mpgkl [ eileaxz +eaxd) —x1/e2 +cR) )
e 1 (23)
IZ 2\/ CZ C3 a ’ km s

where

1
L = ;{5km—ix’1[51kc;n+élmc;c 0110 1,m{Ck+ € +’\/(C’22+C )

(Ok2 + 0x3) (02 +0m3) + —5—5(C30k3 — €3043) (302 — c'25m3)}

/2+

N '2)

CiCim ,
+A+u{6k15m1+ ,2:‘ 51— 04,0 m1)+\/( ¢?) (Omrck— 5k1cm)} (24)
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and it is understood that \/c;? = |c,|. Substituting for A}, in (23) from (18) and adding the
whole space stress field (8) gives the complete stress field due to dislocation distribution (7),
to be

! — 1 -— ilch xh + 1A 4 P ’ 1
O = lcssnjhcijtsLtrahi el(c;xz csxa)[aapachpqrn ettt +7amuallculrncabkw
% lc252w + ic353w S I 51w aIkm — X1/ (R + ¢R)
2 2y Yiw km T 2 2 € . (25)
JeF +c5 JeZ +c3) axy
In the x; reference system the stress components are
Opg = QappOip- (26)

It is worth emphasising that in (25) the quantity L,, contains c; and not c;.
The stress field for a plastic distortion prescribed periodically in the x; co-ordinate
system in the form (11) follows the previous analysis with (18) replaced by

A;rl = _amrals( CiCy CljlekllB]l +B )Crsun (27)
and (8) replaced by (12). This results in the following total stress field.

- % __ Q%) ailcax2+c3x3) ieixy 4 1
Oop = (cscncijtsLtrBji ﬁnr)e =2 [aapachpqrne ! 1'J'-Zamuallculm(jabkw

’cz5zw+10353w ) 01w aI;cm} — xh s 'z]
— 810 Him+ - e XVt +a3f) (28)
{ CJE D T T e ) ox,

Using (21), the superlmposed tractions — X, produce displacements of
o o]
Uur= —f f A, G, 2T 4yt dx ), (29)

Substituting for A4,, from (27) and adding the whole space displacements (13) gives the
displacements in the x; co-ordinate directions to be

et ol 2 x4 . ichx} a alscrsun
U, = et e djq e Cpl B eiXi st
a au’s ™ ijts tuBJx 2\/(0 +C32
* *\[' o X1/(P +ci?
X (— CscncijtsLtu Ji + ﬁun)lam € x5 )} . (30)

4. PERIODIC PLASTIC DISTORTION DISTRIBUTION IN A
HALF-SPACE WITH THE SURFACE RIGIDLY CONSTRAINED

Noting (19) and that,
U, = a,U, 31
the whole space displacements at any point (0, x5, x3) on the surface is given from (13) to be
U/O BI i(chax2 +c3x3) (32)
where

B;n = ~iamuc,C,-juLkuﬁfi (33)
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In order to satisfy the condition of zero displacements on the surface x| = 0, it is necessary
to prescribe additional displacements of — U,?. These give rise to additional stresses of

o= | [ Bz e e axaxy (34
- — 1

where H,,, is the displacement in the x| direction at the point (x|, x5, x3) due to a prescribed

unit displacement at (0, X3, X3) in the x;, direction, and is also recorded in Ref. [8]. Substitut-

ing in (34) for B,, from (33) and adding the whole space stress field (12) gives the stress field

in a half-space with rigidly constrained surface due to an arbitrarily oriented prescribed

plastic distortion, to be

r . Ale2xh tesxs) %* * ic1x)
qu = hfam e {apuaqlCulrn(cscncijtsLtrBji—'Bnr)e b

oy, ot Sz 4 el
+ g CijusCs L!aﬁ]l pak! l:‘su ’\/(Cz + €2+ 8265 +83,63) i 014 ]e /e 32)}

0x)
(35)
where
A+ , X'\ CrCr
Tim = Bunt 33 Buia (€ ) = BB+ 015) Bua + 00
A+3u N
— X1 [0k 1 O+ 01 €k — 0140 ymlCic + C;n)]} . (36)
The displacement field produced by displacements — U.® on the surface x; = 0 is
U;s —_ f J B;nH;m ei(c'zx’2+c’3x'3) dx'2 dX’3 (37)

Substituting for B;, from (33) and adding the whole space displacements (13) results in

U:z = iclcijlel?i ei(c'zx'z +Caxé){amuLku‘];xm e e+t _ aauLku eiciXi } . (38)

5. SINGLE EDGE DISLOCATION IN A HALF-SPACE

To illustrate simply the use of the preceding theory, consider the two-dimensional
problem of a discrete straight edge dislocation running in the x; direction at a distance a
from the free surface and with arbitrary direction of Burgers vector, b, as shown in Fig. 2.
As there is no variation in the x; direction, ¢; may be set equal to zero. The only non-zero
component of the dislocation density tensor may be expressed as

o3y = b.0(x; —acosb).d(x,+asin 6) (39)

where 0 is the Dirac delta function which may be expressed in Fourier form as

|
6(x1—a)=ﬁj gl ade (40)
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F1G. 2. Single edge dislocation in half-space with arbitrary direction of Burgers vector.

The set of direction cosines for this problem are

cosf —sinf O
a;= |sinf cos O 41
0 0 1

From (25) the shear stress component ¢, is found to be (for only a5, non-zero)

2iudy, c, €42 , 5 sin20 .
01y = ——— {|(c5—c])———cC,C, COS 20 [e*1*1
12 (1—V)(C%+C§)2 ( 2 1) 2 142

+ [(c, sin 8 —c, cos 8)(c, cos O+ ¢, sin B)(x|c3 —1)
+ix}cy(cy sin 0+ ¢, cos 0)?] e"‘""“} (42)

with v being the Poisson’s ratio of the material. Using (40) dislocation distribution (39)
may be expressed in periodic form and substitution in (42), and noting (20), results in

, ll,tb ¢y eiﬂ(cz sin@—cy cos @) sin 20
O12 = 2n2(1_v)f J (S +c3)? (€3 — )—3——clc2 cos 20

i ub ® ia(c2sin8— )
X e:(nxl +c2x3) dC dC + c em(cz sin c1c0s0)
P an (1) 2

x { —(c, sin 6+ ¢, cos 0)°x, +i(c, sin 0 — ¢, cos 6)(c, cos 8+ ¢, sin O)(x)|cy| — 1)}

x e~ *ilel gleaxz g de, . (43)

The first integral represents the whole space stress, the latter being the free surface contribu-
tion. The integrations in (43) may be performed by use of Cauchy’s theorem in the complex
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¢; and ¢, planes, giving

' ’ 2 12
X5\Xy—a)y"—Xx
os .4 2201~ = ]

ub (x) —a)[(x; — af — x7] .
¢ )
{ (6 —aP 32 e~

712 = =)

_[2axi — )¢ + @ +6x1x) + AT - xF (¢ +a)[06 +af — T
(<) + a7 +x7P [0} + ) +x777°

4axixy[3(x) +a)’ = xF]  x5[(x] +a)* ~x7 G0 (44)
[(x} +a)? + x5 [0y +a)* +x57]° '

Which agrees with the standard solution of Head [10].

6. APPLICATION TO THE ANALYSIS OF FIBRE REINFORCED MATERIALS

As previously stated a material reinforced by a system of discontinuous fibres presents
analytical difficulties due to the geometric singularity at the fibre ends. However, a solution
may be obtained by replacing the actual fibres by matrix material containing an initial
strain distribution which produces the same restraint to deformation as the high modulus
fibres.

Consider a half-space subjected to a tensile traction 7 and reinforced by a regular fibre
array as shown in Fig. 3. Conditions are assumed to be those of plane strain in the x,
direction. The fibres all have a length/thickness ratio of a/b and the spacing is determined
by the dimensions d and e. The position of the fibre array relative to the free surface is
governed by fand h, while its orientation is defined by the angle 8. Suppose that the actual
fibres are replaced by matrix material containing a constant initial strain, A, in the axial
fibre directions only. It is assumed that the fibres have no lateral restraining effect and
consequently the theory is restricted to fibres with a high length/thickness ratio. The value
of A will be determined later. This prescribed plastic distortion may be expressed in the

F1G. 3. Fibre reinforced half-space subjected to tensile traction, 1.
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x; co-ordinate system of Fig. 3, by means of Fourier series as follows

24ab Ab 2 1(. pra . pr(d—
in

a\ .
Bti(x1, X)) = —— Y —[sin—-—s )) elPrde=h

de E p=—© d T
p#0
+£ i 1( sin ﬂ—sin M) elian/e)x2—h)
nd '1=;oo (4 e
]

T op=—wa=—o d
p#O0 q#0
. pn(d—a me—b) e _
+Slnp (d ) q (e ) (ipr/d)(x1— f) e(an/e)(xz ) (45)

All other components of S being zero.

For a S}, of the form given by (11) the stresses and displacements in an unbounded
medium, with respect to co-ordinate system x;, are given by (12) and (13) as

4
a‘“l = —ﬂzﬂ __.c_z_ . B*l ei(€1x1+£‘2x2)
! 1—v(c2+c)?
2,2
0-52 = __ZK __El_cz_. ’1'1 ellerxs ¥ eax2)
1-v (2 +cd)
0-"2 = __2__ - €162 B* el(clx1+c2x2) (46)
2 —v(c?+c2)

—ic, [2—v
U'iz 5 ; ( vc§+c1)ﬁ* eilcixa+c2x2)

u ___ 2__ .2 %* i(cyx) +cpx2)
U= =52 6 Cl)ﬁue e

where p and v are the material properties of the matrix material. Each term in (45) is of
the form in (11), hence the stress and displacement fields can be found from (46) on substitu-
tion of appropriate values for ¢, and c¢,, and summing over p and g, giving

duda 21| . qnb . qnle—Db) qr
L4 = - _— — —h
12 n(l—V)dqzlq(sn e 0 e M (x2=h)
28”‘4 y Z 0. —cos—~(x1 -f). COS—(xz—h)
(1-—v pﬁlq 1
8 2 © ©
o4, = __2_/1/1_ ¢ z Z 0.pq cosﬂ(xl—f)-cosql(xz—h)
*(1—-v\dl <= & d e
p=14g=1 (47)
. R ) sin 2 (x, ~ 1) .sin L (x, — b
012 = n2(1~v).dp—1q=l q e 2
U‘i 44 2 & 2—v 2 e? . PpT _ q_n
a wad p;1 qgl Q. (1 d2 -p*| sin d (1 =f)- cos e (x2=h)

N
5
R

=g L X Q-(I—jvcf—dz p)coseg(xx—f)sinq;n(xz—h)
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where
(sin ng sin ggé +sin 2 n(‘;— a) sin qn(ee— b))
0= L "
(q +—5 B pz)

It should be noted that all stresses and displacements are real.

The stress and displacement fields caused by the presence of the free surface may be
found with the aid of equations (28) and (30) in which the terms dependent on I, represent
the surface effects. For only %, non-zero and of the form given by (11), the stresses and
displacements (with respect to the x; co-ordinate system) due to the presence of the free
surface can be shown to be

ot = 2uS{cy(1+x1|cyl) +(c, cos 6—c, sin B)ix' s}
2 ’
g5, = 2u8 {c’z(l —x|c5) + i('?c%—x’lc’z)(cl cos 6 — ¢, sin 9)}
2
0’5, = 2uS{—ix\c? +(x}|cy| — 1)(c, cos 0—c2 sin 6)} (49)

S
Uus =~,—{c’2(x’1|c’2|+2(1— v))— l(x cz+ | 2v))(c1cos6 cy smH)}

|5l

Ics

+(2(1 —v)— x'|cy|)(c, cos 8—c, sin 0)}

S ,
U’;—_——,{icz(c( —2v)—X\c)
5l |c5l
where
_ Clzczﬂaﬁ — xiles] aichxy
T +art ¢ e

For this problem the transformation direction cosines are again given by (41) and hence
from (20)
¢} =c;co88—c,sinf
. (51)
¢y = ¢, sin 0+c¢, cos 6.
Once again since each term in (45) is of periodic form, summations over p and q yield the
stresses and displacements due to the presence of the free surface to be

< 4;1Aacosz(9 o , g . :
o, = (i = qz T. [(1+x1m)cos¢+x1—é-sm6.smd>

Y oy w. [(1+x’1n)cosy-(E‘;cos()——%sintﬁ?)x’1 siny]

2
(1 V) p;;ooo g=1

4uA 202 2
oS L JpAacos’ v T,[(1_x'1m)cos¢+(;—x’1)q7nsin05in¢:l

22 nd1-v) &

4uA

2(1 - i iW.l:(l—x}n)cosv—(%cos@—%sin9)(%—x’1) siny] (52)
p==

wg=1
0
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4uAa cos?f 2
Crd(l—v)

s
012 =

Y T. [x’l cosZB.gg—sin ¢ +(1—x,m)sin 8 cos q§]

q=1

;(?A > Z w. I:xl(—sm9+—~cost9) siny

V) p—;ooo gq=1 d

(I—)E cos H—q—T—E sin 9)
d e

- (xyjn—1) cos y:l
(I—)E sin 9+£1— cos 9)
d e

P;.: Z{i"j f f T. [(2(1~—v)+x'1m)cos¢—(x'1 d mzv))@smesw]/

2a(1 2 Z ZIW[(x’ln+2(l-v))cosy
p~-—coq

+ (EE cos 8— sin 9) (x’l -f-(1 _2v)) sin y]
d e n

Us 24acos?f 2 2 (1-2v) qn
T nbd(l—v) Z T. [( o- m

d 1-2
+a— zb(l 3 Y Z w. U - - v})(d 6+~—cos€)smy

p—-—ooq 1

(% cos 9———7! sin 6)

2(1 —v}—x'n) cos y]
(Esin9+@6059)
d e
where
—b \
T= 1( qrb sin——«—~—qn(ee ))e”"”‘

sin ——
q e

pn

sin —— sin — + sin

sin ¢ +(x\m— 2(1-v))sm900s¢]/

rq d e d e e

[EEEN

m= FE-COSQ
[

n ='~p—xsin9+@-cos6
d e

b= ‘-Ié’f(x; cos 6—h)

y = %TE(x’z sin 9——f)+g§(x’2 cos 68— h).

2
( sin9+@cos())
W__l_(. pna . qmb pr(d — )S qnie— b))(ﬂ) d e i
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Once again these final expressions are entirely real. The complete stress and displacement
fields are given by the sum of (47) and (52) (after transformation to a common co-ordinate
system) and addition of the values associated with the applied traction, t.

The value of the initial strain, 4, may be determined from the condition that the fibres
behave linearly over a specified fraction pa of their length. Due to the applied stress t the
strain in the x, direction in the absence of any reinforcing fibres is

€1, = %(sin2 0—vcos? )

where E and v are the elastic properties of the matrix material. Due to the eigenstrain
distribution there will be an additional strain along the axis of the fibre of

4 Yilpa.0)
pa
since the displacement along a fibre is linear over a fraction pa of its length. U is the
displacement in the x, direction in the whole space due to a unit eigenstrain, and is given
from (47). Therefore the total strain along a length pa of the fibre is of constant amount
“(pa, 0

L(sin? 0—vcos? )+ 471020, (54)

E pa
The total stress in the x, direction along the axis of a fibre is

tsin? 0+ Ac4 (0, 0)

where ', | is the whole space stress, (47), due to a unit eigenstrain. The first stress term is that
due to the applied load, the second being that produced by the eigenstrain distribution. The
value of 61, at x; = 0 may be taken as the stress is constant (see Fig. 7) along the effective
length of the fibre. If the fibres have an elastic modulus of KE, where K is a constant, then
the strain along the effective length pa of the fibre is of constant value

1
g(Tsin” 6+ 46%,(0,0) (55)

Equating (54) and (55) gives the required value of 4 to be

) . I:(—Ilz—l) sin? 6 +v cos? 6:| .
TE [Uipa0) oi,0.0)] 9
pa KE

Numerical results were obtained, by the use of a computer, for a fibre orientation, 0, of
45° and a value of K = 22, being representative of a carbon fibre reinforced composite.
The distance between centres of fibres was chosen as ten times the fibre thickness and the
fibre length to thickness ratio taken as 24. The Poisson’s ratio of the matrix material was
assumed to be 0-45 being representative of an epoxy-resin commonly used. The displace-
ment along the axis of a general fibre is shown in Fig. 4 for the case of an unbounded medium
subjected to an arbitrary tensile stress 7. The additional displacements caused by the presence
of a free surface at x| = 0 are shown in Fig. 5, as well as the total axial displacement.
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Fi16. 4. Axial displacements of a typical fibre in whole space.

Figure 6 illustrates the shear stress distribution along the fibre-matrix interface for
both whole space and half-space situations. The normal stress distribution along the axis
of the fibre is shown in Fig. 7.

7. FRANK DISLOCATION NETWORK INCLINED TO A FREE SURFACE

Consider a regular Frank dislocation network of edge length 2a as shown in Fig. 8. For
a perfectly hexagonal network every dislocation should be a pure screw according to

5T U
E o (x,,0)
*2
X.
ar| = =
£ T -— — T
-— —_
- —»
Kidy x{ X
E
222€; E- X MODUL TOTAL DISPLACEMENT
£, ppe™22E: - MATRIX MOOULUS ToTAL DISPLAC
- 45 TOTAL DISPLACEMENT
2tk Vmarix IN WHOLE SURFACE
E
a.24 e
b S:10
1T
£]
/ x
0 ] 1 ) L T . o
2 4 6 8 0 12 14 16 8 20

SURFACE EFFECT

FiG. 5. Axial displacement of fibre in a half-space.
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FIG. 6. Variation of shear stress ¢, along fibre/matrix interface of fibre in a reinforced half-space.

Frank [11]. Suppose such a network occurs in the vicinity of a free surface defined by
xy = 0; the relative orientation of the surface and network being governed by the set of
transformation direction cosines, a;;, between the co-ordinate systems x; and x;. The com-
plete network is composed of three systems of dislocation segments parallel to AB, BC and
AF and denoted by the superscripts 1, 2 and 3, respectively.
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Fi1G. 7. Variation of normal stress g, along axis of fibre in a reinforced half-space.
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FiG. 8. Illustration of Frank dislocation network in a half-space showing surface and network
co-ordinate systems.

The dislocation density of system 1 can be expressed in the x; co-ordinate system in
terms of Fourier series and integrals to be

bV ® {21 1 nn
a(zlz)=~——"4n\/(3)af {3 3m;_:m(1+cosm7r)e["""/‘/“"”"’+”=z_:cO n[sm?
#0 n#0
2 2nm
+lcosnn—zcos—;ﬁ—sm g ]e"""/3")"2+ Z Z [sm— (57
"0 e

2nmn 2nn
+cos nw|{—icos —3——sm T+ icosnn

J elinn/3a)x; e[imn/Jta)ang} gicttxi—d) de,

all other components being zero and b‘? the Burgers’ vector. Identical expressions hold for
systems 2 and 3 but with x,, x5 replaced by #,, 15 and &,, £, respectively.

The stress field for such a network parallel to the free surface of a half space has been
determined by Owen and Mura [8], the results being presented as the stresses for such a
network in an unbounded medium on which were superimposed the stresses caused by the
free surface. For the present case the stress field for the network in an unbounded medium
will be unchanged, and it only remains to find the portion of the stress field due to the
presence of the free surface. For «;, , of the form (7) the surface effect stresses can be expressed
from (25), with respect to the x; co-ordinate system, as

0%y = K, {R;3x(a3,65 +a3,65)—S22a,,(14+ X1 p)}

. K, 2ved  xycf 2ver xic?
07, = {Rzz[azucz(z"' - 2)+ az.C 3( e
D P 14 p p

2vc?

c I’ 7
_S22a1u( pz + p3 —xxczz)} (58)
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where -
p = e +c?
(59)
Ku = - Snjz CZﬁsal lculmcs‘{‘tr
and
8y2 = Ry, +iS;, (60)

where both R,, and S,, are real.

Each term in (57) is of the periodic form (7), hence the stresses due to the presence of the
free surface may be obtained from (58) on integrating with respect to ¢, from — oo to
and performing the various summations over m and n. A computer program was written for
this purpose, the contributions of systems 2 and 3 also being calculated and added. Numeri-
cal values were produced for the configuration shown in Fig. 9, for an arbitrary Burgers
vector, b. Some typical stress components, expressed in the x; co-ordinate system, calculated
along the line, HJ, defined by x, = 0, x; = \/(3)a/4 are shown in Figs. 10-12.

PLANE OF.
NETWORK

FREE ]
SURFACE

Fi1G. 9. Frank dislocation network in a half-space, inclined at 30° to the free surface.
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8. DISCUSSION OF RESULTS AND CONCLUSIONS

Solutions are given for the stress fields in a half-space due to a periodically prescribed
distribution of dislocations and plastic distortion. In particular any arbitrary relative
orientation between the free surface and the cartesian co-ordinate system which defines
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Fic. 11. Variation of stress component o, along line HJ, defined by x, = 0, x, = \/3¢/4.
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F1G. 12. Variation of stress component o5 along line HJ, defined by x, = 0, x; = \/3a/4.

the distributions is permitted. For the case of prescribed plastic distortion the condition
of complete fixity of the surface is also considered.

The theory is then applied to the problem of a material reinforced by a regular array of
fibres. Figure 4 clearly demonstrates the restraint to deformation provided by the fibres,
whilst a marked reduction in displacement near the fibre end is also evident. This latter
effect is observed in practice and is due to the fact that full transfer of load from matrix to
fibre only takes place after a certain distance from the fibre end. The main feature of the
half space solution of Fig. 5 is the large deformation produced at the free surface.

The expected singularity in interfacial shear stress at the fibre end caused by the fibre
geometry is evident in Fig. 6. A similar singularity occurs at x, = 0 due to the presence of
the free surface. Figure 7 illustrates the basic load-bearing mechanism of fibre reinforced
materials. It is seen that the fibre is highly stressed in the axial direction, the load being
rapidly shed beyond the fibre end. The presence of the free surface, x; = 0 merely results in
the reduction of the fibre axial stress in this region.

Forthe Frank dislocation network problem, it is seen from Figs. 10-12 that the boundary
stress requirements (i.e. 6;; = 0) are completely satisfied. A considerable reduction in stress
values due to the presence of the free surface is also evident.
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Ab6cTpakT—/aétca pelueHwe IS MONR HaMPskeHHH, BBI3BAHHOrO NMEPHONMYECKHM CIUIOIIHBIM pachpe-
Ze/IEHHEM AMCOKAUMI/HAK MAACTHYECKHX DUCTOPCHH/B MONYMJIOCKOCTH, A1 OOLIEro ciiyyas, B KOTOPOM
CHCTEMA AEKapTOBLIX KOOPAHHAT, ONPEACIAIOWIAA 3TO pachnpeneincHue, NPOH3IBOJIBHO HaMpasieHa M0
OTHOWEHUN K cBOBOAHOI rosepxHOCTH. PaccMaTpuBaercs Takxe yCnOBHE NMOJIHOA HEMOABMKXHOCTH Ha
MOBEPXHOCTH AA MUIACTHYSCKOR OHCTOPCHHU.

Vka3bipaerca, 3aTeM, cnocod NPUMEHEHHA TEOPHH LA ONPEACSICHHA MoJIe HanpsXXeHu#k U nepeme-
LIeHUA B MaTepuane, yCuneHHbIM BOOKHOM. Mccnenyercs, HakoHel, 3a4a4a COTH AMCJIOKauHil ppaHka,
HAKJIOHEHHBIX K ¢BOOOIHOM MOBEPXHOCTH.



